Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int{\frac{\cos x-\sin x}{1+2\sin x\cos x}}dx $ is equal to

KEAMKEAM 2009Integrals

Solution:

Let $ I=\int{\frac{\cos x-\sin x}{{{(\cos x+\sin x)}^{2}}}}dx $
Put $ \cos x+\sin x=t $
$ \Rightarrow $ $ (\cos x-\sin x)dx=dt $
$ \therefore $ $ I=\int{\frac{1}{{{t}^{2}}}}dt $
$ I=-\frac{1}{t}+c=-\frac{1}{\sin x+\cos x}+c $