Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int{\cos \left\{ 2{{\tan }^{-1}}\sqrt{\frac{1-x}{1+x}} \right\}}dx $ is equal to

KEAMKEAM 2007Integrals

Solution:

Let $ I=\int{\cos \left\{ 2{{\tan }^{-1}}\sqrt{\frac{1-x}{1+x}} \right\}}dx $ Put $ x=cos\theta $
$ \therefore $ $ I=\int{\cos \left\{ 2{{\tan }^{-1}}\sqrt{\frac{1-\cos \theta }{1+\cos \theta }} \right\}}dx $
$=\int{\cos \left\{ 2{{\tan }^{-1}}\left( \tan \frac{\theta }{2} \right) \right\}}dx $
$=\int{\cos \theta dx=\int{x}\,}dx=\frac{{{x}^{2}}}{2}+c $