Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \frac{a}{\left(1+x^{2}\right) tan^{-1}x}dx = $

Integrals

Solution:

$I = a \int \frac{dx}{\left(1+x^{2}\right)tan^{-1}x}$

Put $tan^{-1}x = t \frac{\Rightarrow 1}{1+x^{2}} dx = dt $

$ \Rightarrow I = a \int\frac{dt}{t }= a \,log \left|t\right| +C = a\, log \left|tan^{-1}x\right| + C$