Thank you for reporting, we will resolve it shortly
Q.
$\int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x d x$ is equal to
Integrals
Solution:
Let $5^{5^x}= t \Rightarrow 5^{5^x} \cdot \ln 5 \cdot 5^x \cdot \ln 5 dx = dt$
$I =\int \frac{5^{ t d t}}{(\ln 5)^2}=\frac{5^{ t }}{(\ln 5)^3}+ c =\frac{5^{5^{3^x}}}{(\ln 5)^3}+ c$