Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int{(\sqrt[3]{x})}\left( \sqrt[5]{1+\sqrt[3]{{{x}^{4}}}} \right)dx $ is equal to

KEAMKEAM 2009Integrals

Solution:

Let $ I=\int{\sqrt[3]{x}}(\sqrt[5]{1+\sqrt[3]{{{x}^{4}}}})dx $
Put $ \sqrt[3]{{{x}^{4}}}=t $
$ \Rightarrow $ $ \frac{4}{3}.\sqrt[3]{x}dx=dt $
$ \therefore $ $ I=\frac{3}{4}\int{(\sqrt[5]{1+t})dt} $
$=\frac{3}{4}\left[ \frac{{{(1+t)}^{\frac{1}{5}+1}}}{\frac{1}{5}+1} \right]+c $
$=\frac{5}{8}[{{(1+\sqrt[3]{{{x}^{4}}})}^{6/5}}]+c $