Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \frac{2^{x+1} - 5^{x-1}}{10^{x}}dx = $

COMEDKCOMEDK 2008Integrals

Solution:

$ \int \frac{2^{x+1} - 5^{x - 1}}{10^x} dx $
$\int \frac{2^{x+1}}{\left(2 \times5\right)^{x} } -\frac{5^{x-1}}{\left(2\times 5 \right)^{x}} dx$
$ = \int \left(\frac{2}{5^{x} } - \frac{5^{-1}}{2^{x}}\right)dx = \int \left(2\left(5\right)^{-x} -\frac{1}{5} 2^{-x}\right)dx$
$ = 2\left(\frac{5^{-x}}{- \log5 }\right) - \frac{1}{5} \left( \frac{2^{-x}}{-\log 2}\right)+C$
$ = -\frac{2}{\log 5}5^{-x} + \frac{1}{5\log 2}2^{-x} + C$