Let $I=\int\left(\frac{2-\sin 2 x}{1-\cos 2 x}\right) e^{x} d x$
$=\int\left(\frac{2-2 \sin x \cos x}{2 \sin ^{2} x}\right) e^{x} d x$
$=\int \underset{II}{\text{cosec}^{2}}\underset{I}{ x e^{x} d x}-\int \cot x e^{x} d x$
$=-\cot x e^{x}-\int(-\cot x) e^{x} d x-\int \cot x e^{x} d x+c$
$=-\cot x e^{x}+c$