Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int 2^{m x} \cdot 3^{n x} d x$ when $m, n \in N$ is equal to:

Integrals

Solution:

$I=\int 2^{m x} \cdot 3^{n x} d x=\int\left(2^m \cdot 3^n\right)^x d x=\frac{2^{m x} \cdot 3^{n x}}{\ln \left(2^m \cdot 3^n\right)}+c$