Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \frac{1}{\log a}\left(a^{x} \cos a^{x}\right) d x=$

KEAMKEAM 2019

Solution:

Put $a^{x}=v \Rightarrow a^{x} d x=\frac{d v}{\log a^{'}}$ then it reduces to
$\int \frac{ l }{(\log a)^{2}} \cos \,v \,d v=\frac{ l }{(\log a)^{2}} \sin\, v+C$
$=\frac{1}{(\log a)^{2}} \sin a^{x}+C$