Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\int \frac{1}{\sqrt{3-6x-9x^{2}}} dx $ is equal to

KCETKCET 2018Integrals

Solution:

$\int \frac{1}{\sqrt{3-6x-9x^{2}} } dx = \int \frac{dx}{\sqrt{-\left[9x^{2} + 6x-3\right]}} $
$=\int \frac{dx}{\sqrt{-\left[9x^{2} +6x+1-4\right]}} $
$=\int \frac{dx}{\sqrt{-\left[\left(3x+1\right)^{2} - 2^{2}\right]}} $
$=\int\frac{dx}{\sqrt{2^{2} -\left(3x+1\right)^{2}}} $
$= \frac{1}{3} \sin^{-1} \left(\frac{3x+1}{2}\right)+c$