Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int_{0}^{a}{\sqrt{{{a}^{2}}-{{x}^{2}}}}\,\,\,dx $ is equal to

J & K CETJ & K CET 2007

Solution:

$ \int_{0}^{a}{\sqrt{{{a}^{2}}-{{x}^{2}}}dx} $
$ =\left[ \frac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\frac{{{a}^{2}}}{2}\,{{\sin }^{-1}}\left( \frac{x}{a} \right) \right]_{0}^{a} $
$ =\left[ 0+\frac{{{a}^{2}}}{2}\,{{\sin }^{-1}}(1)-0-\frac{{{a}^{2}}}{2}{{\sin }^{-1}}(0) \right] $
$ =\frac{{{a}^{2}}}{2}.\frac{\pi }{2}-0=\frac{{{a}^{2}}\pi }{4} $