Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Instead of angular momentum quantization a sudent posits that energy is quantized as $E=-E_{0} / n\left(E_{0} > 0\right)$ and $n$ is a positive integer. Which of the following options is correct?

KVPYKVPY 2020

Solution:

$F _{ e }=\frac{ mv ^{2}}{ r }$
$ \Rightarrow \frac{ mv ^{2}}{ r }=\frac{ k ( Ze )( e )}{ r ^{2}}$
$\frac{1}{2} mv ^{2}=\frac{ KZe ^{2}}{2 r }$.....(i) (Kinetic energy)
Potential energy $=\frac{ Kq _{1} q _{2}}{ r }$
$=\frac{ K ( Ze )(- e )}{ r }$....(ii)
Total energy $= KE + PE $
$=-\frac{ KZe ^{2}}{2 r }=-\frac{ E _{0}}{ n }$
$\therefore r \propto n$
As kinetic energy $=\frac{ KZe ^{2}}{2 r }$
$ \Rightarrow KE \propto \frac{1}{ n }$
or $v ^{2} \propto \frac{1}{ n } $
$\Rightarrow v ^{2} \propto \frac{1}{\sqrt{ n }}$
$L = mvr$
$L \propto vr$
$L \propto \frac{1}{\sqrt{ n }}( n ) \propto \sqrt{ n }$
$\Rightarrow L \propto \sqrt{ n }$