Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Infinite number of triangles are formed as shown in figure. If total area of these triangles is A then $8 A$ is equal toMathematics Question Image

Sequences and Series

Solution:

We have,
$A =\left(\frac{1}{2} \times \frac{1}{3} \times 1\right)+\left(\frac{1}{2}+\frac{1}{9} \times 2\right)+\left(\frac{1}{2} \times \frac{1}{27}+3\right)+\ldots \infty$
$=\underbrace{\frac{1}{2}\left(\frac{1}{3}+\frac{2}{9}+\frac{3}{27}+\ldots \infty\right)}_{ s }=\frac{ S }{2}$
Let $S=\frac{1}{3}+\frac{2}{3^{2}}+\frac{3}{3^{3}}+\ldots \infty$, then
$\frac{ S }{3}=0+\frac{1}{3^{2}}+\frac{2}{3^{3}}+\frac{3}{3^{4}}+\ldots \infty$
(Subtracting)
$\Rightarrow \frac{2 S }{3}=\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \infty$
$=\frac{\frac{1}{3}}{1-\frac{1}{3}}=\frac{\frac{1}{3}}{\frac{2}{3}}=\frac{1}{2} $
$\Rightarrow S =\frac{3}{4}$
$\therefore A =\frac{ S }{2}=\frac{3}{8} $
$\Rightarrow 8 A =3$