Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In Young’s double slit experiment, the amplitudes of the two waves incident on the two slits are $A$ and $2A.$ If $I_0$ is the maximum intensity, then the intensity at a spot on the screen, where the phase difference between the two interfering waves is $\phi.$

KVPYKVPY 2018

Solution:

Resultant intensity when two waves with phase difference $\phi$ interfere is
$I=I_{1}+I_{2}+2\sqrt{I_{1}}\sqrt{I_{2}}$ cos$\phi$
As, intensity $I \propto A^{2}$ or $I = kA^{2},$
where $k= a$ constant and A is amplitude.
So, $I=A_{1}^{2}+A_{2}^{2}+2A_{1}A_{2} \cos\phi$
Here, $A_{1}=A$ and $A_{2}=2A$
$\Rightarrow I=A^{2}+\left(2A\right)^{2}+2\left(A\right)\left(2A\right)\cos \phi$
$=A^{2}\left(5+4 \cos\phi\right) \ldots_{\left(i\right)}$
Intensity is maximum $\left(I_{o}\right),$ when $\cos \phi= 1$
$\Rightarrow I_{o}=A^{2}\left(5+4\times1\right)=9A^{2}$
$\Rightarrow A^{2}=I_{o}/ 9\ldots \left(ii\right)$
So, resultant intensity,
$I=A^{2}\left(5+4 \cos\phi\right)$
[From Eqs. (i) and (ii)]
$\Rightarrow I=\frac{I_{o}}{9}\left(5+4\cos\phi\right) $