Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In which of the following sets, all the species are diamagnetic in nature?

Chemical Bonding and Molecular Structure

Solution:

$C_{2}:(\sigma 1 s)^{2} < (\overset{*}{\sigma} 1 s)^{2} < (\sigma 2 s)^{2} < (\overset{*}{\sigma} 2 s)^{2}<(\pi 2 p x)^{2}=(\pi 2 p y)^{2}$

$\mu_{ eff }=0 ;$ i.e. diamagnetic

$B _{2}:(\sigma ls )^{2} < (\overset{*}{{\sigma}} 1 s )^{2} < (\sigma 2 s )^{2} < (\overset{*}{\sigma} 2 s )^{2} < (\pi 2 px )^{1} =(\pi 2 py )^{1}$

$\mu_{ eff } \neq 0 . ;$ i.e. paramagnetic

$O _{2}: (\sigma l s )^{2} < (\overset{*}{{\sigma}} 1 s )^{2} < (\sigma 2 s )^{2} < (\overset{*}{{\sigma}} 2 s )^{2} < (\sigma 2 pz )^{2} < (\pi 2 px )^{2}$

$=(\pi 2 py )^{2} < (\overset{*}{\pi} 2 p x )^{1}=(\overset{*}{\pi} 2 py )^{1}$

$O _{2}: \mu_{ eff } \neq 0$

$O _{2}^{2+}: \mu_{ eff }=0$

$O _{2}^{2-}: \mu_{ eff }=0$

$N _{2}:(\sigma l s)^{2} < (\overset{*}{\sigma} 1 s)^{2} < (\sigma 2 s)^{2} < (\overset{*}{\sigma} 2 s)^{2} < (\pi 2 p x)^{2}$

$=(\pi 2 p y)^{2} < (\sigma 2 p z)^{2}$

$N _{2}: \mu_{ eff }=0$

$N _{2}^{+}: \mu_{eff} \neq 0$

$N _{2}^{2-}: \mu_{eff} \neq 0$

$N _{2}^{2+}: \mu_{eff }=0$