Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In two separate collisions, the coefficients of restitutions $ {{e}_{1}} $ and $ {{e}_{2}} $ are in the ratio 3: 1. In the first collision the relative velocity of approach is twice the relative velocity of separation. Then the ratio between the relative velocity of approach and relative velocity of separation in the second collision is:

EAMCETEAMCET 2006Work, Energy and Power

Solution:

The coefficient of restitution $ e=\left( \frac{Velocity\,of\,separation}{Velocity\,of\,approach} \right) $ $ \therefore $ $ {{e}_{1}}=\frac{{{({{v}_{separation}})}_{1}}}{{{({{v}_{apporach}})}_{1}}}=\frac{1}{2} $ and $ {{e}_{2}}=\frac{{{({{v}_{separation}})}_{2}}}{{{({{v}_{apporach}})}_{2}}} $ but $ \frac{{{e}_{1}}}{{{e}_{2}}}=\frac{3}{1} $ $ \Rightarrow $ $ \frac{{{e}_{2}}}{{{e}_{1}}}=\frac{1}{3} $ $ \therefore $ $ \frac{{{({{v}_{separation}})}_{2}}}{{{({{v}_{apporach}})}_{2}}}=\frac{1}{2}\times \frac{1}{3} $ $ \Rightarrow $ $ \frac{{{({{v}_{separation}})}_{2}}}{{{({{v}_{apporach}})}_{2}}}=\frac{6}{1} $