Thank you for reporting, we will resolve it shortly
Q.
In triangle $ABC , a\left(b^{2}+c^{2}\right) \cos A +b\left(c^{2}+a^{2}\right) \cos B +c\left(a^{2}+b^{2}\right) \cos C$ is equal to
ManipalManipal 2017
Solution:
$\left(b^{2}+c^{2}\right) a \cos A+\left(c^{2}+a^{2}\right) b \cos B+\left(a^{2}+b^{2}\right) c \cos C$
$=a b(b \cos A+ a \cos B)+b c(b \cos C +c \cos B)+c a(a \cos C +c \cos A)$
$=a b c +a b c +a b c=3 a b c$