Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In triangle $A B C$, if $r_{1}=36, r_{2}=18$ and $r_{3}=12$, then $a+b=$

AP EAMCETAP EAMCET 2019

Solution:

It is given in a$\Delta\, A B C$
$r_{1}=\frac{\Delta}{s-a}=36, r_{2}=\frac{\Delta}{s-b}=18$ and $r_{3}=\frac{\Delta}{s-c}=12$
$\Rightarrow \,\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{1}{36}+\frac{1}{18}+\frac{1}{12}=\frac{1+2+3}{36}=\frac{1}{6}$
$\Rightarrow \, \frac{s-a+s-b+s-c}{\Delta}=\frac{1}{6}$
$\Rightarrow \, \frac{s}{\Delta}=\frac{1}{6} $
$\Rightarrow \,\Delta=6 s$
So, $ r_{1}=\frac{\Delta}{s-a}=\frac{6 s}{s-a}=36 $
$\Rightarrow \,s=6 s-6 a$
$ \Rightarrow \, 6 a=5 s$
$r_{2}=\frac{\Delta}{s-b}=\frac{6 s}{s-b}=18 $
$\Rightarrow \,s=3 s-3 b $
$\Rightarrow \,3 b=2 s$
and $r_{3}=\frac{\Delta}{s-c}=\frac{6 s}{s-c}=12$
$ \Rightarrow \,s=2 s-2 c $
$\Rightarrow \,2 c=s$
So, $\Delta^{2}=36 s^{2}$
$\Rightarrow \, s(s-a)(s-b)(s-c)=36 s^{2}$
$\Rightarrow \,\left(s-\frac{5 s}{6}\right)\left(s-\frac{2 s}{3}\right)\left(s-\frac{s}{2}\right)=36 \,s$
$\Rightarrow \, s^{3}\left(\frac{1}{6}\right)\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)=36\, s$
$\Rightarrow \, s^{2}=(36)^{2} $
$\Rightarrow \, s=36$
$a=30$ and $b=24$
So, $a+b=30+24=54$