Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In $\triangle A B C$, if $a=3, b=5, c=4$, then find value of $\sin \frac{B}{2}+\cos \frac{B}{2}$.

Trigonometric Functions

Solution:

Given, $a=3, b=5, c=4$
$\sin \frac{B}{2}+\cos \frac{B}{2}$
$=\sqrt{\frac{(s-a)(s-c)}{c a}}+\sqrt{\frac{s(s-b)}{c a}}$
$=\sqrt{\frac{(6-3)(6-4)}{4 \times 3}}+\sqrt{\frac{6(6-5)}{4 \times 3}}$
$=\sqrt{\frac{3 \times 2}{4 \times 3}}+\sqrt{\frac{6 \times 1}{4 \times 3}}$
$=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}$