Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In the system shown in figure, masses of the blocks are such that when system is released, the acceleration of pulley $P_{1}$ is $a$ upward and acceleration of block $A$ is $a_{1}$ upward. It is found that the acceleration of block $C$ is same as that of $A$ both in magnitude and direction $\left(a_{1} > a > a_{1} / 2\right)$. ThenPhysics Question Image

Laws of Motion

Solution:

The acceleration of block $A$, w.r.t pulley $P_{1}$;
$a_{A P_{1}}=\left(a_{1}-a\right) \uparrow$
$a_{B P_{1}}=\left(a_{B}-a\right) \downarrow$
The acceleration of block $B$, w.r.t pulley $P_{1}$;
But, $\left|\vec{a}_{AP_{1}}\right|=-\left|\vec{a}_{B P_1}\right|$
$a_{1}-a \equiv a_{B}+a$
Hence, $a_{B}=2 a-a_{1} \uparrow$
The acceleration of block $C$ w.r.t pulley $P_{2}$;
$a_{C P_{2}}=\left(a_{c}+a\right) \uparrow$
The acceleration of block $D$ w.r.t pulley $P_{2}$;
$a_{D P_{2}}=\left(a_{D}-a\right) \downarrow$
$a_{C}+a=a_{D}-a$
$a_{D}=\left(2 a+a_{1}\right) \downarrow$
Hence, $\vec{a}_{B C}=\vec{a}_{B}-\vec{a}_{c}=2\left(a_{1}-a\right) \downarrow$
and $\vec{a}_{\beta D}=\vec{a}_{\Delta}-\vec{a}_{D}=4 a \uparrow$