Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In the relation $p = \frac{\alpha }{\beta }e^{-\frac{\alpha z}{k\theta }}p $ is pressure, $z$ is distance, $k$ is Boltzmann constant and $ \theta $ is the temperature. The dimensional formula of $P$ will be

AFMCAFMC 2010

Solution:

In the given equation, $\frac{\alpha z}{k \theta}$ should be dimensionless.
$\therefore \alpha=\frac{k \theta}{z} $
$\Rightarrow [\alpha]=\frac{\left[M L^{2} T^{-2} K^{-1}\right] \times[K]}{[L]}$
$=\left[M L T^{-2}\right]$
and $p=\frac{\alpha}{\beta} $
$\Rightarrow [\beta]=\left[\frac{\alpha}{p}\right]$
$=\frac{\left[M L T^{-2}\right]}{\left[M L^{-1} T^{-2}\right]}=\left[M^{0} L^{2} T^{0}\right]$