Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In the mean value theorem $ f(b)-f(a)=(b-a)\,f'(c), $ if $ a=4,\text{ }b=9 $ and $ f(x)=\sqrt{x}, $ then the value of c is

J & K CETJ & K CET 2005

Solution:

Given, $ a=4,\,n=9,\,f(x)=\sqrt{x} $ and $ f(b)-f(a)=(b-a)\,f'(c) $
$ \Rightarrow $ $ f'(c)=\frac{f(b)-f(a)}{b-a}=\frac{3-2}{9-4} $
$ \Rightarrow $ $ f'(c)=\frac{1}{5} $
$ \Rightarrow $ $ \frac{1}{2}{{c}^{-1/2}}=\frac{1}{5} $
$ \Rightarrow $ $ {{c}^{-1/2}}=\frac{5}{2} $
$ \Rightarrow $ $ c={{\left( \frac{5}{2} \right)}^{2}}=\frac{25}{4}=6.25 $