Q.
In the List-I below, four different paths of a particle are given as functions of time. In these functions, $\alpha$ and $\beta$ are positive constants of appropriate dimensions and $\alpha \neq \beta$. In each case, the force acting on the particle is either zero or conservative. In List-II, five physical quantities of the particle are mentioned: $\vec{L}$ is the linear momentum, $\vec{L}$ is the angular momentum about the origin, $K$ is the kinetic energy, $U$ is the potential energy and $E$ is the total energy. Match each path in List-I with those quantities in List-II, which are conserved for that path.
List-I
List-II
P.
$\vec{r} (t) = \alpha t \hat{i} + \beta t \hat{j}$
1.
$\vec{p}$
Q.
$\vec{r}(t) = \alpha \, \cos \omega t \, \hat{i} + \beta \, \sin \, \omega t \hat{j}$
2
$\vec{L}$
R.
$\vec{r} (t) = \alpha (\cos \omega t \hat{i} + \sin \, \omega t \hat{j}$
3
K
S.
$\vec{r} (t) = \alpha t \hat{i} + \frac{\beta}{2} t^2 \hat{j}$
4
U
5
E
List-I | List-II | ||
---|---|---|---|
P. | $\vec{r} (t) = \alpha t \hat{i} + \beta t \hat{j}$ | 1. | $\vec{p}$ |
Q. | $\vec{r}(t) = \alpha \, \cos \omega t \, \hat{i} + \beta \, \sin \, \omega t \hat{j}$ | 2 | $\vec{L}$ |
R. | $\vec{r} (t) = \alpha (\cos \omega t \hat{i} + \sin \, \omega t \hat{j}$ | 3 | K |
S. | $\vec{r} (t) = \alpha t \hat{i} + \frac{\beta}{2} t^2 \hat{j}$ | 4 | U |
5 | E |
Solution: