Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In the line spectra of hydrogen atom, difference between the largest and the shortest wavelengths of the Lyman series is $304 \mathring{A}$. The corresponding difference for the Paschan series in $\mathring{A}$ is: _______

JEE MainJEE Main 2020Atoms

Solution:

$\lambda=\frac{c}{\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)}$
for lyman series
$\lambda_{1}=\frac{c}{\frac{1}{1^{2}}-\frac{1}{\infty^{2}}}=c(n=\infty$ to $n=1$
$\lambda_{2}=\frac{c}{\frac{1}{1^{2}}-\frac{1}{2^{2}}}=\frac{4 c}{3}(n=2$ to $n=1)$
$\Delta \lambda=\lambda_{2}-\lambda_{1}=\frac{c}{3}=304 \mathring{A}$
$ \Rightarrow c=912 \mathring{A}$
for paschen series
$\lambda_{1}=\frac{c}{\frac{1}{3^{2}}-\frac{1}{\infty^{2}}}=9 c(n=\infty$ to $n=3)$
$\lambda_{2}=\frac{c}{\frac{1}{3^{2}}-\frac{1}{4^{2}}}=\frac{144 c}{7}(n=4$ to $n=3)$
$\Delta \lambda=\lambda_{2}-\lambda_{1}=\frac{144 c}{7}-9 c$
$=\frac{81 c}{7}=\frac{81 \times 912}{7}$
$=10553.14 \mathring{A}$