Q.
In the Haber's process of ammonia manufacture,
$N_{2}\left(\right.g\left.\right)+3H_{2}\left(\right.g\left.\right) \rightarrow 2NH_{3}\left(\right.g\left.\right)$
The rate of appearance of $NH_{3}$ is
$\frac{d \left[\right. N H_{3} \left]\right.}{d t}=2\times 10^{- 4}molL^{-}sec^{- 1}$
The rate of disppearance of $N_{2}$ and $H_{2}$ will be
Rate in terms of $H_2$ $(mol \,L^{-1}\,sec^{-1})$
Rate in terms of $N_2$ $(mol \,L^{-1}\,sec^{-1})$
$3 \times 10^{-4}$
$2 \times 10^{-4}$
$3 \times 10^{-4}$
$1 \times 10^{-4}$
$1 \times 10^{-4}$
$3 \times 10^{-4}$
$2 \times 10^{-4}$
$2 \times 10^{-4}$
Rate in terms of $H_2$ $(mol \,L^{-1}\,sec^{-1})$ | Rate in terms of $N_2$ $(mol \,L^{-1}\,sec^{-1})$ |
---|---|
$3 \times 10^{-4}$ | $2 \times 10^{-4}$ |
$3 \times 10^{-4}$ | $1 \times 10^{-4}$ |
$1 \times 10^{-4}$ | $3 \times 10^{-4}$ |
$2 \times 10^{-4}$ | $2 \times 10^{-4}$ |
NTA AbhyasNTA Abhyas 2020Chemical Kinetics
Solution: