Given, $G=\{1,3,7,9\}$
Here, $1 \times{ }_{10} 1=1,3 \times{ }_{10} 1=3,7 \times{ }_{10} 1=7$
$9 \times_{10} 1=9$
It is clear that 1 is the identity element. Since, $G$ is a group, then inverse of each element exist in $G$.
$\Rightarrow 3 \times_{10} 7=1=7 \times_{10} 3$
$\therefore \,7 \in G$ is the inverse of 3