Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In the equilibrium,
$\left.2 SO _{2(g)}+ O _{2(g)} \rightleftharpoons 2 SO _{3(g)}\right)$
the partial pressure of $SO _{2}, O _{2}$ and $SO _{3}$ are $0.662$, $0.101$ and $0.331$ atm respectively. What should be the partial pressure of oxygen so that the equilibrium concentration of $SO _{2}$ and $SO _{3}$ are equal ?

Solution:

$K _{ p }=\frac{\left( P _{ SO _{3}}\right)^{2}}{\left( P _{ SO _{2}}\right)^{2}\left( P _{ O _{2}}\right)} $
$=\frac{(0.331)^{2}}{(0.662)^{2}(0.101)}=2.5$
Now $K _{ p }=\frac{\left( P _{ SO _{3}}\right)^{2}}{\left( P _{ SO _{2}}\right)^{2}\left( P _{ O _{2}}\right)}$
If $P_{SO_{3}}=P_{SO_{2}}$
Then, $P _{ O _{2}}=\frac{1}{ K _{ p }} $
$=\frac{1}{2.5}=0.4 \,atm$