Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In the circuit shown in the figure switch $S$ is closed at $t=0$ . Then which of the following statements is WRONG.
$\left(Given : R = \sqrt{\frac{L}{2 C}}\right)$
Question

NTA AbhyasNTA Abhyas 2020

Solution:

since $RC=\frac{L}{2 R}$
$\Rightarrow $ time constants for both branches are equal.
$i_{1}=\frac{\epsilon }{R}e^{- t / R C}$
$i_{2}=\frac{\epsilon }{2 R}\left(1 - e^{- t / R C}\right)$
$i=i_{1}+i_{2}=\frac{\epsilon }{2 R}+\frac{\epsilon }{2 R}e^{- t / R C}$
$i_{max}=\frac{\epsilon }{R}$
When, $i=\frac{5 \epsilon }{8 R}=\frac{\epsilon }{2 R}+\frac{\epsilon }{2 R}e^{- t / R C}$
$\Rightarrow t=RCln4=2RCln2$
$i_{1}=i_{2}$
$\Rightarrow \frac{\epsilon }{R}e^{- t / R C}=\frac{\epsilon }{2 R}\left(1 - e^{- t / R C}\right)$
$\Rightarrow t=RCln3$
Solution