Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In $ \Delta \,ABC,\frac{\cos 2A}{{{a}^{2}}}-\frac{\cos 2B}{{{b}^{2}}} $ is equal to:

Bihar CECEBihar CECE 2002

Solution:

$ \therefore $ $ \frac{\cos 2A}{{{a}^{2}}}-\frac{\cos 2B}{{{b}^{2}}} $
$ =\frac{1-2{{\sin }^{2}}A}{{{a}^{2}}}-\frac{1-2{{\sin }^{2}}B}{{{b}^{2}}} $
Applying sine rule
$ =\frac{1}{{{a}^{2}}}-\frac{1}{{{b}^{2}}}-2k(1-1) $
$ =\frac{1}{{{a}^{2}}}-\frac{1}{{{b}^{2}}} $