Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In brass, the velocity of longitudinal wave is 100 times the velocity of the transverse wave. If $Y=1 \times 10^{11}\, N / m ^{2}$, then stress in the wire is

Waves

Solution:

As $v_{L}=\sqrt{\frac{Y}{\rho}}$ and $v_{T}=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{T}{\pi r^{2} \rho}}$
$\therefore \,\,\,\frac{v_{L}}{v_{T}}=\sqrt{\frac{Y}{\rho} \times \frac{\pi r^{2} \rho}{T}}=\sqrt{\frac{Y}{T / \pi r^{2}}}=\sqrt{\frac{Y}{\text { stress }}}$
$\therefore \,\,\,$ Stress $=\frac{Y}{\left(v_{L} / v_{T}\right)^{2}}=\frac{1 \times 10^{11}}{(100)^{2}}=1 \times 10^{7} \,N / m ^{2}$