Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In Boolean algebra, $\overline{ \bar{A} . \bar{B}}$ is equal to

VITEEEVITEEE 2007

Solution:

According to De-Morgan's theorem
$\bar{A} \cdot \bar{B}=(\overline{A+B})$
$\therefore (\overline{\bar{A} \cdot \bar{B}})=(\overline{\bar{A}+\bar{B}})$
$=(A+B) (\because \overline{\bar{A}}=A) $
$ \therefore (\overline{\bar{A} \cdot \bar{B}}) =(A+B) $