Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In an increasing geometric progression, the sum of the first and the last term is $99,$ the product of the second and the last but one term is $288$ and the sum of all the terms is $189.$ Then, the number of terms in the progression is equal to

NTA AbhyasNTA Abhyas 2020Sequences and Series

Solution:

G.P. is increasing, i.e. $r>1.$
Given, $a+ar^{n - 1}=99,ar\cdot ar^{n - 2}=288$ and $\frac{a \left(1 - r^{n}\right)}{1 - r}=189$ .
$a\left(1 + r^{n - 1}\right)=99$ and $a^{2}r^{n - 1}=288$
$\Rightarrow a\left(1 + \frac{288}{a^{2}}\right)=99$
$\Rightarrow a^{2}+288=99a\Rightarrow a^{2}-99a+288=0$
$\Rightarrow a=3,96\Rightarrow r^{n - 1}=\frac{288}{a^{2}}=32,\frac{1}{32}$
As $r>1\Rightarrow r^{n - 1}=32fora=3$
Now, $\frac{a \left(1 - r^{n}\right)}{1 - r}=189\Rightarrow \frac{3 \left(1 - r \cdot r^{n - 1}\right)}{1 - r}=189$
$\Rightarrow \left(\frac{1 - r \cdot 32}{1 - r}\right)=63\Rightarrow 1-32r=63-63r$
$\Rightarrow 31r=62\Rightarrow r=2.$
Now, $2^{n - 1}=32\Rightarrow n=6.$