Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In an experiment to determine the acceleration due to gravity g, the formula used for the time period of a periodic motion is $T =2 \pi \sqrt{\frac{7( R - r )}{5\, g }} .$ The values of $R$ and $r$ are measured to be $(60 \pm 1) mm$ and $(10 \pm 1) mm$, respectively. In five successive measurements, the time period is found to be $0.52\, s,\, 0.56\, s$, $0.57\, s,\, 0.54\, s$ and $0.59\, s$. The least count of the watch used for the measurement of time period is $0.01\, s$. Which of the following statement(s) is(are) true?

JEE AdvancedJEE Advanced 2016

Solution:

Time period
$T =2 \pi \sqrt{\frac{7( R - r )}{5 g }}$
Time period
$0.52\, \sec\,\, Av \langle T \rangle=\frac{0.52+0.56+0.57+0.54+0.59}{5}$
II $0.56\, \sec$
III $0.57\, \sec$
IV $0.54\, \sec \langle T \rangle=\frac{2.78}{5}$
V $0.59\, \sec \langle T \rangle=0.556\, \sec$
image
$T^{2} g(R-r)^{-1}=$ const
$\frac{2 \Delta T}{T}+\frac{\Delta g}{g}-\frac{\Delta(R-r)}{R-r}=0$
$\frac{2 \Delta T}{T}+\frac{\Delta g}{g}-\frac{1}{(R-r)}(\Delta R-\Delta r)=0$
$\frac{\Delta g}{g}=\left(\frac{2 \times 3.57}{100}+\frac{2}{50}\right)$
$\%$ error $=\left(\frac{2 \times 3.57}{100}+\frac{2}{50}\right) \times 100 \approx 11 \%$