Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In an equilateral triangle, the inradius, circumradius and one of the exradii are in the ratio

VITEEEVITEEE 2011

Solution:

We have, $\Delta=\frac{\sqrt{3}}{4}a^{2}, s=\frac{3a}{2}$
Inradius $r=\frac{\Delta}{s}=\frac{a}{2\sqrt{3}}$
Circumradius $R=\frac{abc}{4\Delta}=\frac{a^{3}}{\sqrt{3}a^{2}}=\frac{a}{\sqrt{3}}$
and exradii $r_{1}=\frac{\Delta}{s-a}=\frac{\sqrt{3}/ 4a^{2}}{a / 2}$
$= \frac{\sqrt{3}}{2}a$
$\therefore $ Required ratio $=r: R: r_{1}$
$= \frac{a}{2\sqrt{3}} : \frac{a}{\sqrt{3}} : \frac{\sqrt{3}}{2}$
$ a=1 : 2 : 3.$