Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In an ellipse, if the lines joining focus to the extremities of the minor axis form an equilateral triangle with the minor axis, then the eccentricity of the ellipse is

UPSEEUPSEE 2015

Solution:

Consider, the horizontal ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $a^{2}>\,b^{2}$
image
Since, $B B'S$ is an equilateral triangle.
$\therefore \, B S=B B'$
$\Rightarrow \,\sqrt{(a e-0)^{2}+(0-b)^{2}}=\sqrt{0+(2 b)^{2}}$
$\Rightarrow \, a^{2} e^{2}+b^{2}=4 b^{2}$
$\Rightarrow \,b^{2}=\frac{a^{2} e^{2}}{3}$
Now, $ e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{e^{2}}{3}}$
$\Rightarrow \, e^{2}=1-\frac{e^{2}}{3}$
$\Rightarrow \,\frac{4 e^{2}}{3}=1$
$\Rightarrow \, e=\frac{\sqrt{3}}{2}$