Thank you for reporting, we will resolve it shortly
Q.
In a triangle $ABC$, the angle bisector BD of $\angle B$ intersects AC in D. Suppose $BC =2, CD =1$ and $BD =\frac{3}{\sqrt{2}}$. The perimeter of the triangle $ABC$ is
KVPYKVPY 2020
Solution:
$\frac{2 ac }{ a + c } \cos \frac{ B }{2}=\frac{3}{\sqrt{2}}$
$\Rightarrow \frac{4 c}{2+c}\left[\frac{4+\frac{9}{2}-1}{2 \times 2 \times \frac{3}{\sqrt{2}}}\right]=\frac{3}{\sqrt{2}}$
$\Rightarrow c=3$
Now, $\frac{c}{a}=\frac{A D}{D C} \Rightarrow A D=\frac{3}{2}$
$\Rightarrow b =\frac{5}{2}$
$\Rightarrow \text { Perimeter }=\frac{15}{2}$