Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In a triangle $ ABC $ , if $ \tan \frac{A}{2}=\frac{5}{6} $ and $ \tan \frac{B}{2}=\frac{20}{37} $ , then $ a+c $ is equal to

Jharkhand CECEJharkhand CECE 2009

Solution:

Since, $ \frac{A}{2}+\frac{B}{2}=\frac{\pi }{2}-\frac{C}{2} $
$ \Rightarrow $ $ \frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2}\tan \frac{B}{2}}=\tan \left( \frac{\pi }{2}-\frac{C}{2} \right) $
$ \Rightarrow $ $ \frac{\frac{5}{6}+\frac{20}{37}}{1-\frac{5}{6}\times \frac{20}{37}}=\cot \frac{C}{2} $
$ \Rightarrow $ $ \frac{305}{122}=\cot \frac{C}{2} $
$ \Rightarrow $ $ \tan \frac{C}{2}=\frac{2}{5} $
Now, $ \tan \frac{A}{2}\tan \frac{C}{2}=\frac{5}{6}\times \frac{2}{5} $
$ \Rightarrow $ $ \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}=\frac{1}{3} $
$ \Rightarrow $ $ \frac{s-b}{s}=\frac{1}{3} $
$ \Rightarrow $ $ 3s-3b=s $
$ \Rightarrow $ $ 2s=3b\Rightarrow a+b+c=3b $
$ \Rightarrow $ $ a+c=2b $