Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In a triangle ABC, if (a-b)(s-c)=(b-c)(s-a), then r1, r2 and r3 are
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. In a $\triangle ABC$, if $(a-b)(s-c)=(b-c)(s-a)$, then $r_1, r_2$ and $r_3$ are
TS EAMCET 2021
A
in arithmetic progression
B
in geometric progression
C
in harmonic progression
D
equal
Solution:
$ \text { In } \triangle A B C $
$ r_1=\frac{\Delta}{s-a}, r_2=\frac{\Delta}{s-b} \text { and } r_3=\frac{\Delta}{s-c} $
$ \because(a-b)(s-c)=(b-c)(s-a) $
$ \Rightarrow \frac{s-c}{b-c}=\frac{s-a}{a-b}$
$ \Rightarrow \frac{s-c}{(s-c)-(s-b)}=\frac{s-a}{(s-b)-(s-a)} $
$ \Rightarrow \frac{\frac{\Delta}{r_3}}{\frac{\Delta}{r_3}-\frac{\Delta}{r_2}}=\frac{\frac{\Delta}{r_1}}{\frac{\Delta}{r_2}-\frac{\Delta}{r_1}}$
$ \Rightarrow \frac{r_2}{r_2-r_3}=\frac{r_2}{r_1-r_2}$
$ \Rightarrow r_1-r_2=r_2-r_3$
$ \Rightarrow 2 r_2=r_1+r_3$
$ \therefore r_1, r_2, r_3 \text { are in AP. }$