Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In a $\triangle A B C, \tan \frac{A}{2}=\frac{5}{6}, \tan \frac{C}{2}=\frac{2}{5}$, then :

AIEEEAIEEE 2002

Solution:

Key Idea : $\tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$
$\because \tan \frac{A}{2}=\frac{5}{6}$ and $\tan \frac{C}{2}=\frac{2}{5}$
Now, $\tan \frac{A}{2} \tan \frac{C}{2}=\frac{5}{6} \times \frac{2}{5}$
$\Rightarrow \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \cdot \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}=\frac{1}{3}$
$\Rightarrow \frac{s-b}{s}=\frac{1}{3}$
$\Rightarrow 3 s-3 b=s$
$\Rightarrow 2 s=3 b $
$\Rightarrow a + b + c = 3 b$
$\Rightarrow a + c = 2 b$
$\Rightarrow a, b, c$ are in $A P$