Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In a triangle A B C, a: b: c=4: 5: 6 . The ratio of the radius of the circumcircle to that of the incircle is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. In a triangle $A B C, a: b: c=4: 5: 6 .$ The ratio of the radius of the circumcircle to that of the incircle is
Bihar CECE
Bihar CECE 2009
A
$ \frac{15}{4} $
B
$ \frac{11}{5} $
C
$ \frac{16}{7} $
D
$ \frac{16}{3} $
Solution:
Let sides of the triangle are $4 x, 5 x, 6 x$.
$s =\frac{4 x+5 x+6 x}{2}=\frac{15}{2} x$
$\Delta =\sqrt{\frac{15}{2} x\left(\frac{15}{2} x-4 x\right)\left(\frac{15}{2} x-5 x\right)\left(\frac{15}{2} x-6 x\right)}$
$=\sqrt{\frac{15}{2} x \times \frac{7}{2} x \times \frac{5}{2} x \times \frac{3}{2} x}$
$=\frac{15 \sqrt{7} x^{2}}{4}$
Circumradius, $R =\frac{4 x \times 5 x \times 6 x}{4 \times \frac{15 \sqrt{7} x^{2}}{4}}$
$=\frac{8}{\sqrt{7}} x$
Inradius, $r=\frac{\frac{15 \sqrt{7}}{4} x^{2}}{\frac{15}{2} x}$
$=\frac{\sqrt{7}}{2} x$
$\frac{R}{r} =\frac{\frac{8 x}{\sqrt{7}}}{\frac{\sqrt{7} x}{2}}=\frac{16}{7}$