Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In a photo-emissive cell, with exciting wavelength $\lambda$, the maximum kinetic energy of the electron is $K$. If the exciting wavelength is changed to $3 \lambda / 4$, the kinetic energy of the fastest emitted electron will be

Dual Nature of Radiation and Matter

Solution:

$K=\frac{h c}{\lambda}-\phi_{0}$ ...(i)
and $K'=\frac{4 h c}{3 \lambda}-\phi_{0}$ ...(ii)
From Eqs. (i) and (ii), we get
$\Rightarrow K'-K=\frac{4 h c}{3 \lambda}-\frac{h c}{\lambda}$
$K'-K=\frac{h c}{3 \lambda}$
But from Eq. (i) $\frac{h c}{\lambda}=K+\phi_{0}$
$\therefore K'-K=\frac{K}{3}+\frac{\phi_{0}}{3}$
$\Rightarrow K'=\frac{4 K}{3}+\frac{\phi_{0}}{3}$
Or $K' > \frac{4 K}{3}$