Q.
In a $\Delta ABC$ , the sides $BC,CA$ and $AB$ are consecutive positive integers in increasing order. Let $\overset{ \rightarrow }{a},\overset{ \rightarrow }{b}$ and $\overset{ \rightarrow }{c}$ are position vectors of the vertices $A,B$ and $C$ respectively. If $\left(\overset{ \rightarrow }{c} - \overset{ \rightarrow }{a}\right)\cdot \left(\overset{ \rightarrow }{b} - \overset{ \rightarrow }{c}\right)=0$ , then the value of $\left|\overset{ \rightarrow }{a} \times \overset{ \rightarrow }{b} + \overset{ \rightarrow }{b} \times \overset{ \rightarrow }{c} + \overset{ \rightarrow }{c} \times \overset{ \rightarrow }{a}\right|$ is equal to
NTA AbhyasNTA Abhyas 2020Vector Algebra
Solution: