Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In a container water and milk are mixed in the raio $5: 3$. If $16 l$ of mixture are removed and same quantity of milk be added then ratio becomes $3: 5$. The volume (in liters) of the container___

Ratio, Proportion and Variation

Solution:

Let, amount of water be $5 x$ and amount of milk be $3 x$
$\therefore$ Total volume of container $=5 x+3 x=8 x$
Then, amount of water in $16 l$ of mixture.
$ =\frac{5}{8} \times 16$
$ =10 l$
And
Amount of milk in $16 l$ of mixture
$=\frac{3}{8} \times 16$
$ =6 l$
Now,
According to question
$ 5 x-10: 3 x+10:: 3: 5 $
$ \Rightarrow \frac{5 x-10}{3 x+10}=\frac{3}{5}$
Now, cross multiplying
$ \Rightarrow 25 x-50=9 x+30 $
$ \Rightarrow 16 x=80 $
$ \Rightarrow x=\frac{80}{16} $
$ \Rightarrow x=5$
$\therefore$ Volume of container $=8 x=8 \times 5=40 l$