Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In a closed cylinder of capacity $24.6\,L$, the following reaction occurs at $27^{\circ} C$.
$A_{2}(s) \rightleftharpoons B_{2}(s)+2 C(g)$
At equilibrium, $1 \,g$ of $B_{2}(s)$ (molar mass $=50\, g\, mol ^{-1}$ ) is present. The equilibrium constant $K_{p}$ for the equilibrium in atm $^{2}$ unit is
$\left(R=0.082\, L\, atm \,K ^{-1} \,mol ^{-1}\right)$

KEAMKEAM 2014Equilibrium

Solution:

Equilibrium concentration of $B_{2}$,

$\left[B_{2}\right]_{\text {equilibrium }} =\frac{\text { mass }}{\text { molar mass } \times \text { volume }} $

$=\frac{1}{50 \times 24.0}=8.13 \times 10^{-4}$

For the reaction,

image

$ \therefore [C] =2 \times 8.13 \times 10^{-4}=1.63 \times 10^{-3} $

$K_{c} =[C]^{2}=\left[1.63 \times 10^{-3}\right]^{2}=2.66 \times 10^{-6} $

Again from, $K_{p}=K_{C}(K T)^{\Delta n_{y}}$

Here, $\Delta n_{g}=2-0=2$

$K_{p} =2.66 \times 10^{-6} \times(0.082 \times 300)^{2}$

$\approx 1.6 \times 10^{-3} $