Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. In a class of $30$ pupils. $12$ take needls work, $16$ take physics and $18$ take history. If all the $30$ students take at least one subject and no one takes all three, then the number of pupils taking $2$ subjects is

J & K CETJ & K CET 2005

Solution:

Given that $ n(N)=12,\,n(P)=16,\,n(H)=18, $
$ n(N\cup P\cup H)=30 $
and $ n(N\cap P\cap H)=0 $
Now, $ n(N\cup P\cup H)=n(N)+n(P)+n(H) $
$ -n(N\cup P)-n(P\cap H)-n(H\cap N) $
$ +n(N\cap P\cap H) $
$ \Rightarrow $ $ n(N\cap P)+N(P\cap H)+N(H\cap N) $
$ =n(N)+n(P)+n(H)-n(N\cup P\cup H) $
$ =(12+16+18)-30 $
$ =46-30=16 $