Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $z_k=\cos \left(\frac{k \pi}{10}\right)+i \sin \left(\frac{k \pi}{10}\right)$, then $z_1 z_2 z_3 z_4$ is equal to

Complex Numbers and Quadratic Equations

Solution:

We have $z_k=\omega^k$ where
$\omega=\cos \left(\frac{\pi}{10}\right)+i \sin \left(\frac{\pi}{10}\right)$
Thus, $z_1 z_2 z_3 z_4=\omega \cdot \omega^2 \cdot \omega^3 \cdot \omega^4=\omega^{10}$
$=\cos \left(\frac{10 \pi}{10}\right)+i \sin \left(\frac{10 \pi}{10}\right)$
[by the De Movire's Theorem]
$=\cos \pi+i \sin \pi=-1$