Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $|z+\bar{z}|=|z-\bar{z}|$, then the locus of $z$ is

Complex Numbers and Quadratic Equations

Solution:

Let $z=x+i y$. Then,
$|z+\bar{z}|=|z-\bar{z}|$
$\Leftrightarrow|2 x|=|2 i y| $
$\Rightarrow |x|=|y| \Leftrightarrow x=\pm y$
Hence, the locus of $z$ is a pair of straight lines.