Thank you for reporting, we will resolve it shortly
Q.
If $z, \bar{z},-z,-\bar{z}$ forms a rectangle of area $2 \sqrt{3}$ square units, then one such $z$ is
TS EAMCET 2020
Solution:
Let $z=x+i y$
Then, vertices of rectangle are $(x, y),(x,-y),(-x,-y),(-x, y)$
Now, area of rectangle $=(2 x)(2 y)=4 x y$
It is given that,
$\therefore 4 x y=2 \sqrt{3} $
$\Rightarrow 2 x y=\sqrt{3}$
$x=\frac{1}{2}, y=\sqrt{3} $
$\therefore z=\frac{1}{2}+\sqrt{3} i$