Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ z=\frac{7-i}{3-4i}, $ then $ {{z}^{14}} $ is equal to:

KEAMKEAM 2005

Solution:

$ z=\frac{7-i}{3-4i}=\frac{(7-i)(3+4i)}{{{(3)}^{2}}-{{(4i)}^{2}}} $
$ =(1+i) $
$ \therefore $ $ {{z}^{14}}={{(1+i)}^{14}} $
$ ={{\left\{ \sqrt{2}\left( \cos \frac{\pi }{4}+i\sin \frac{\pi }{4} \right) \right\}}^{14}} $
$ ={{2}^{7}}\left( \cos \frac{7\pi }{2}+i\sin \frac{7\pi }{2} \right) $
$ ={{2}^{7}}(-i)=-{{2}^{7}}i $