Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\left|Z-\frac{4}{z}\right|=2$, then the maximum value of $\left|Z\right|$ is equal to

AIEEEAIEEE 2009Complex Numbers and Quadratic Equations

Solution:

$\left|Z\right|=\left|\left(Z-\frac{4}{Z}\right)+\frac{4}{Z}\right| \Rightarrow \left|Z\right|=\left|Z-\frac{4}{Z}+\frac{4}{Z}\right|$
$\Rightarrow \left|Z\right|\le \left|Z-\frac{4}{Z}\right|+\frac{4}{\left|Z\right|} \Rightarrow \left|Z\right|\le2+\frac{4}{\left|Z\right|}$
$\Rightarrow \left|Z\right|^{2}-2\left|Z\right|-4\le0$
$\left(\left|Z\right|-\left(\sqrt{5}+1\right)\right)\left(\left|Z\right|-\left(1-\sqrt{5}\right)\right)\le0 \Rightarrow 1-\sqrt{5} \le\left|Z\right|\le\sqrt{5}+1$